Showing posts with label fungi. Show all posts
Showing posts with label fungi. Show all posts

31 Dec 2021

Fungal Fabric

by Kim Woolcock

The new year makes me think of new beginnings. Why not new bio-inspired technologies?
 

As microplastics clog up our newsfeeds and the biosphere, the search for biodegradable materials becomes more important. One that’s catching my attention is fungal fabric.

Mycena inclinata, Clustered bonnet
Image credit: Stu's Images

When many people think of fungi, they think of mushrooms or mold. Fungi are both of these things, but they are also so much more. The mushrooms that we see popping up in the rainy spring and fall are fruiting bodies, made to distribute spores. They are just the tip of the underground iceberg. Made of tightly intertwined fungal threads called hyphae, they are produced by huge webs of hyphae living invisibly in the soil, in rotting wood, in plant roots and leaves. These hyphae live inside their food, producing enzymes that degrade it, and then soaking up the released nutrients.

 

Oyster mushroom (Pleurotus ostreatus) mycelium growing on coffee grounds in a petri
dish
Image credit: Tobi Kellner


Hyphae can grow to form any shape (just look at the many shapes of mushrooms, from corals to cup fungi to tooth fungi), and dried mushrooms have a tough and rubbery texture. Innovators are leveraging this combination of traits to produce a wide variety of fungal fabrics. The hyphae are like the threads of cloth, interweaving as they grow. This fabric weaves itself!

Starting with waste products like sawdust or grain husks, designers add fungal spores, a small amount of water, and wait for the fungus to devour the food and fill the mold. Fungi grow quickly, so fungal leather can be produced in a matter of weeks. The resulting mat of hyphae can be dried, tanned, and dyed to produce “leather” that is strong, durable, breathable – and beautiful.

Designers are using fungal leather to make watches, purses, clothing, and shoes. Maybe some fashion-forward fungal leather items are just what my new year needs.

 

4 Dec 2020

Fungus Photos

 by Jan Thornhill

[Today's post is based on some images and captions by Jan Thornhill. Her studies of fungus lead her to make photographs with surprising colours and textures! There are spores and bracket fungus and more.]

 

 

I found a new hen-of-the-woods (Grifola frondosa) fungus growing at the base of a tree, and took a quick location pic so I'd be able to find the same tree again next year. (My criteria for this location pic are: identifiable mushroom in foreground and, in the background, a fallen-tree-on-the-embankment landmark). Then I downloaded what I think is easily the best hen picture I've ever taken. I wish I'd had something to do with it!  


Here is Rhodofomes cajanderi, one of 2 pink-pored shelf fungi in Ontario (the other is R. rosea). Both are uncommon where I live. I can't get over the colour of this one! 

 


One of my favourite tiny gilled mushrooms - Resupinatus applicatus. Compare this image of the underside of these mushrooms to a photo of the topside, with my hand for scale.





This fungus is Gomphus clavatus (or Pig's Foot Gomphus - one of my favourite common names). It is a choice edible mushroom that, like the Chanterelle, has "folds" instead of gills. Despite the purplish colour, this mushroom produces ochre spores (visible on a couple of lobes in this pic).




Ever find raccoon scat sporting hair? If the "hair" tips are beaded with minute yellow spheres that then turn black (as the enclosed spores mature) you've probably found the fungal mold, Phycomyces blakesleeanus.



It's taken 30 years, but I finally found the jelly fungus, Dacryopinax spathularia! Here it is, growing on and in a fallen log.


[Mushrooms, of course, are more than the little round white shapes found in grocery stores. It's tricky to tell wild mushrooms apart. If you find some fungi growing wild, better not eat them. Just enjoy their looks and leave any eating to experts like Jan Thornhill.]

9 Nov 2019

Today's Fun Fungus Walk

Our own Joan Marie Galat is a scholar of all things fungus. And she still knows how to enjoy just finding the odd mushroom here and there while out for a walk in the woods. Here are some photos she shared recently with friends. With compassion for those of us who can find it hard to figure out Latin names for various species of living things, she's captioned these photos in a more informal way.

 "Bite marks?"


"A colony."


 "A super-colony!"

 "Notice the rarely-seen upside-down bottlecap mushroom."



"The funnest of fungi!"

You can also explore the outdoors, including trees, wildlife, and the night sky, through the pages of Joan's books [https://www.joangalat.com/view-books/] . Her comments there are considerably more precise, and very interesting!

23 Feb 2018

Colourful Wood: Spalting Fungi

by Jan Thornhill

Chlorociboria produces blue-green fruit bodies.
Chlorociboria produces gorgeous blue-green fruit bodies.
It’s easy to forget while collecting fungi that the ones we find growing on wood and elsewhere are only their fruiting bodies—the actual organism is usually hidden, its mycelium buried deep in wood or soil. But the microscopic mycelium of some wood-loving fungi make it very clear just how large an area they’ve taken over by staining the wood they’ve colonized. This staining, which can sometimes be dark lines, other times extensive areas of colour, is called spalting.

Blue-green wood spalted by the cup fungus Chlorociboria.
Wood stained blue-green by the fungus Chlorociboria.
The fairly common Chlorociboria aeruginascens and its sister C. aeruginosa, which can only be differentiated microscopically, stain the wood they’ve colonized a stunning blue-green with the pigment xylindein. This beautiful blue wood has been used by woodworkers since at least the 15th century, primarily in inlays (see examples here). It’s such a striking colour that studies are underway to find a way to inoculate various forest trees with Chlorociboria to enhance the value of the lumber. I used to be impressed that anyone had ever found a piece of this blue wood in good enough shape to use for anything other than as a conversation piece. Until last year, whenever I found itthe wood was already so decomposed I could easily pull it apart with my fingers.

And then I came across this oak tree that had fallen across a park path:

Ruby & Fritz inspecting spalted log
Though the colour of this Chlorociboria spalted log is a much
darker than usual, the wood is still usable.
And then I discovered a much more uncommon disc fungus that also stains wood.

Patinellaria sanguinea produces tiny black discs and stains wood coral red
Patinellaria sanguinea stains wood coral red. 
I had found a mystery purple crust growing on a branch in the fall. I couldn't get any spores from it to aid identification, so I wet it and put it in a plastic container, hoping that by giving it a little warmth and moisture it might revive and offer me some spores. The only thing that happened was that it started decaying. I was about to relegate the branch to the kindling pile when I noticed that in a couple of places its surface was oddly coloured with reddish-pink spiderwebby fuzz. I assumed this was just an unusual mold, but when I got out my loupe to inspect it I was surprised to see a multitude of minute blackish discs embedded in it. Hmm.

Patinellaria sanguinea under microscope
Amazing colour of "black" Patinellaria sanguinea fruit bodies under the microscope.
When I put a sample under the microscope I immediately saw that the pink fuzz was not a mold, but a hyphal mat, or subiculum, that clearly belonged to the blackish discs. Not only that, but, when sectioned, the “black” discs were actually quite strikingly coloured. There were even some asci and spores.

Wood stained, or spalted, by Patinellaria sanguinea 
None of my books gave me a name, so I got out my knife out and carved a few chunks off the branch to dry for later study. It was only then that I realized my little ascomycete had stained the wood a gorgeous coral red. 

Days passed. I was doing an unrelated image search for another minute black disc, Patellaria atrata, when halfway down the page a picture jumped out at me. It clearly showed exactly what I had accidentally grown—mini blackish discs with a pinkish red subiculum. And they had a name. Panitellaria sanguinea

I have not been able to find out much about this little curiosity, which has also been known as Durella sanguinea and Peziza sanguinea, other than that it’s rare, grows in North America and Europe, and apparently prefers hardwoods. 

A number of common wood-decaying fungi spalt wood with black
lines – barriers that keep other fungi out of their "territory."
Spalted wood created by several different
species, including Chlorociboria.

(N.B. This post appeared in a slightly different form on my blog, Weird & Wonderful Wild Mushrooms)

More Info:


Tom Volk’s Chlorociboria page
Panitellaria sanguinea on Mycoquebec
Panitellaria sanguinea on Mycokey
Robinson, S.C., Tudor, D., Snider, H., Cooper, P.A. 2012. Stimulating growth and xylindein production of Chlorociboria aeruginascens in agar-based systems. AMB Express 2(15).
More about spalting: Northern Spalting
George Grant Hedgcock. "Studies Upon Some Chromogenic Fungi which Discolor Wood." St. Louis, 1906

15 Dec 2017

Read It and Weep: Fungal Guttation

by Jan Thornhill
Guttation on Fomitopsis pinicola bracket fungus
Young Red-Belted Polypore (Fomitopsis pinicola) with guttation drops
Some fungi are prone to exhibiting a curious phenomenon—they exude beads of moisture, called guttation. In several polypores, such as Fomitopsis pinicola, the liquid produced can look so much like tears that you'd swear the fungus was weeping. Or maybe sweating. Other species produce pigmented drops that can look like milk, or tar, or even blood.

Guttation is more well-known in some vascular plants. During the night, when the plant's transpiration system is shut down, pressure from excess moisture in the roots can force beads of sap out of special structures on leaf edges. 

strawberry leaf guttation noah erhardt
Guttation droplets on strawberry leaves (Noah Erhardt/Wikipedia)
In fungi, the guttation mechanism is not so well understood. In many species, however, it's so often observed, particularly during times of rapid growth when temperature and humidity are favourable, that these beads of liquid can be a reliable macroscopic characteristic. Hydnellum peckii, for instance, so frequently "bleeds" pigmented drops in its early stages of growth that it's been given gruesome nicknames, including "Bleeding Tooth Fungus" and "Devil's Tooth." Coincidentally, a 1965 study found a compound in the fruiting body of  H. peckii that has anticoagulant properties similar to those of heparin, too much of which can make one bleed to death internally.   

bleeding mushroom guttation lisa neighbour
Bleeding Tooth Fungus (Hydnellum peckiiproduces red-pigmented 
guttation droplets during periods of rapid growth(Lisa Neighbour)
A couple of years ago, I came across a crop of Inonotus glomeratus on a maple log. I'd found this amazing polypore a few times, once right after it had showered itself, and everything else around it, with millions of sulphur-yellow spores. The one I'd found, though, was very young, and instead of spewing spores, it was weeping globules of "tar" in copious enough amounts that shiny black pools were accumulating on the forest floor. Unlike most guttation drops, which are watery, these exudations were thick and sticky and stained my finger and thumb a deep auburn brown. And kind of glued them together. Oddly, though this unusual guttation has been noted by others, there seems to be no mention of it in the literature. I. glomeratus is so unusual in so many ways, I ended up writing a whole post about it.

Inonotus glomeratus fungus dripping black tar guttation
Fast-growing Inonotus glomeratus produces tarry guttation.
yellow spores of polypore Inonotus glomeratus
This Inonotus glomeratus continued to drip its viscous black exudate
even after it began releasing its yellow spores.
holes made guttation Inonotus glomeratus
The guttation drops on this Inonotus glomeratus were so thick that the fungus grew
around them, producing a pitted appearance after rain washed them away.
Polypores and Hydnoids are not the only fungi to produce guttation. In moist conditions, young Suillus americanus stipes can be heavy with yellow-tinted drops. Guttation is also common enough in the uncommon Rhodotus palmatus that this characteristic is often included in descriptions. 

Suillus americanus liquid drops stem
Chicken Fat Suillus (Suillus americanus) 
guttation of young Rhodotus palmatus
Wrinkled peach (Rhodotus palmatus) 

Guttation can happen in incredibly small ways, too. During the Toronto Bioblitz a few years ago, we found some Lachnum subvirgineum that, despite what seemed like dry conditions, were covered in minute guttation droplets, as were most other Lachnum I've since come across. 



Lachnum subvirgineum with guttation water droplets
The largest of these Lachnum subvirgineum was less than .5 mm. in 
diameter, which makes the guttation droplets impressively small.

Another minute character is so characteristically bejewelled in guttation droplets, it's named for it: Pilobolus crystallinus, which is one of the "Cannon" or "Hat Thrower" fungi found on herbivore dung.


Dung-loving Pilobilus crystallinus, is named for its sparkling
guttation droplets. (See my post about this remarkable,
tiny fungus, also called Hat Thrower, or Cannon Fungus)
Though little is known about guttation in wild fruiting bodies of fungi, it's a common phenomenon of fungal mycelia and hyphae in the lab, and a number of studies have been done to determine what the exudates contain. Penicillin has been found in the guttation droplets produced by Penicillium species in similar concentrations to that found in the culture broth, while gliotoxin, which has immunosuppressive qualities, has been found in guttation droplets of Aspergillus fumigatusDo these fungi use guttation droplets as reservoirs for metabolic byproducts, or do they simply use them for water storage

Or have different species evolved to produce guttation droplets for different purposes? The edible bolete, Suillus bovinus, for instance, has been shown in the lab to reabsorb nutrients from its guttation droplets, while leaving behind less useful byproducts, such as oxalic acid. So perhaps guttation has evolved as an efficient method of expelling waste for some fungi. 

Is that what's going on with Inonotus glomeratus? Is that viscous, black ooze just a collection of rejected metabolic byproducts? If anyone would like to analyze it and has the means, I have some dehydrated exudate that I'd love to send you!  


slime mold Stemonitis flavogenita guttation drops
Even some slime moulds, like this immature Stemonitis 
flavogenita, produce guttation droplets. (Ulrike Kullik) 
pink polypore Fomitopsis rose
Pink-pored Fomitopsis rosea are even prettier when 
decorated with shimmering beads of moisture. I think the 
pattern on rim was made by the "teeth" of a grazing slug.

young Punctularia strigosozonata bleeding
Tree Bacon (Punctularia strigosozonata) "bleeds" rust-tinted droplets.
Early nubbins of an unidentified polypore exude milky drops.
teardrop shaped indentations left by guttation on bracket fungus
This Red-belted Polypore (Fomitopsis pinicola) produced guttation 
droplets for three months one summer. When it finally stopped, 
trompe l'oeil teardrop-shaped indentations were left behind.
Wet weather makes Xylaria hypoxylon produce beads of moisture.
Weeping Pleurotus dryinus
This large Pleurotus dryinus was weeping copiously
despite there having been no rain  for a week.
Many parasitic Hypomyces, such as this H. chrysospermus, are prolific weepers. 
Inonotus dryadeus is a lumpy polypore known for its ample
 production of amber guttation droplets. (Wikipedia)
Jack-o-lantern Mushroom (Omphalotus illudens) guttation
The Jack-o-lantern Mushroom (Omphalotus illudens) not only
glows in the dark, it also produces orange-staining guttation.
Resinous Polypore, (Ischnoderma resinosum) guttation droplets
The Resinous Polypore, (Ischnoderma resinosum), is also named
for the droplets it produces when very young.
Mycena  leianna produced tiny white droplets
The reddish-rimmed gills of this group of Mycena
leaiana
produced tiny white droplets. 
hairy asexual form of Postia ptychogaster produces guttation
Even the hairy asexual form of Postia ptychogaster produces guttation.


Selected References:


Erast Parmasto, Andrus Voitk, (2010). Why Do Mushrooms Weep? Fungi, Vol. 3:4

Hutwimmer, S., Wang, H., Strasser, H., Burgstaller, W. (2010) Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins.Mycologia, Vol. 102 no. 1, 1-10

Gerhard Saueracker. On the Exudates of Polypore Fungi. Fungimap Newsletter 48, Jan. 2013

(NB: This is a slightly edited repost from my other blog: Weird & Wonderful Wild Mushrooms

24 Mar 2017

The Undead of Winter

 By Jan Thornhill
Ruby LOVES to "play dead" so we can will bury her in snow!
I love early spring! And no – I’m not talking about tulips and the return of migratory birds, though I have nothing against those things. I’m talking about earlier, in the first weeks of March, when there’s still plenty of snow on the ground, when, for all intents and purposes, it’s still the dead of winter.

Except it’s not dead.



Minute snow fleas appear on warm days in late winter.
In fact, there’s a surprising amount of life in the late winter forest here in Ontario – especially when the temperature squeaks a few degrees above the freezing mark. By early March, tree sap has begun to flow. Within a few days, deciduous crowns in the distance have taken on a haze, as if someone has smeared wet watercolour across the tips of their sharp branches. Their leaf buds are plumping. Male chickadees start using their “Hey, sweetie,” song, which, I think, is self-explanatory. Skunks wake from their winter torpor and amble about briefly – possibly just to stretch their legs – before returning to their dens to wait for real spring to come. On sun-warmed snow patches at the base of trees, snow fleas congregate, sometimes by the tens of thousands (see my post about snow fleas here).


This perennial Red-belted Polypore (Fomitopsis pinicola)
will drop spores on warm winter days.
And, all over the forest—believe it or not—fungi are procreating like crazy.


Amanita frostiana has a mycorrhizal relationship
with oaks and conifers.
These are not your basic ground mushrooms with caps and stems that you see in summer and fall. Most of those are mycorrhizal, and have a mutualistic relationship with trees, trading underground water and nutrients for the sugars that trees produce. But trees shut down sugar production in the late fall, so the underground networks of mycelia of mycorrhizal fungi also shut down during the frozen months.


The Violet-toothed polypore (Trichaptum biforme) is an annual saprobe.
But there are all kinds of other fungi that have a different kind of relationship to trees. They rot them. Many of these tree decayers, or saprobes, are polypores. Polypores develop their spores inside tiny tubes instead of on gills like store-bought mushrooms. 


The Hexagonal-pored Polypore (Neofavolus alveolaris)
 
has—surprise!—hexagonal pores.
The most commonly noticed polypores are shelf fungi or conks. Many are perennial – they have skeletal hyphae—tissue than can withstand freezing and thawing—and just keep growing and growing, sometimes for 70 years or more. And during that time, whenever the temperature goes above freezing for a couple of days, these fungi produce spores. 


Yearly growth layers are obvious on this Phellinus that grows
new spore-producing tubes on its underside each year. 
But, why, you might wonder would they send out spores so much earlier than the birds start doing it and the bees start doing it—when the forest is still, in effect, asleep?
The Gilled Polypore, Lenzites betulina, has elongated tubes that almost look like gills.
They do it early because polypores, like all fungi, are opportunistic. Polypores that grow on living trees usually inhabit the heartwood that runs up the core of a tree trunk. To set up shop in this deadwood, a polypore has to get past a tree’s sapwood, the living layer below the tree’s bark. In the winter, deep freezes cause fractures in tree bark. These frost cracks are perfect for catching passing spores. When spring rains moisten the crevices, and before the tree has time to seal these cracks, the spores germinate and their mycelia work their way into the core. Once past the tree's defences, the fungus sets up shop, spreading its mycelia up and down and around. A fungus can secretly live inside a tree—gradually breaking down lignin and cellulose—for many years before it gives us humans a clue of its presence—by producing reproductive organs (shelf fungi, or conks) on the tree’s exterior.

Fomes fomentarius, is commonly called the Hoof Fungus
 (its shape)  or Tinder Fungus (used to carry fire from place to place
before matches were invented; Ötzi was carrying some).
The Cinnabar Polypore (Pycnoporus cinnabarinus) is the colour of dragon's blood!
The common name for Trametes versicolor is Turkey tails—for good reason
Chicken-of-the-Woods is an excellent edible polypore
 that has the unmistakable texture of overcooked
chicken if you miss its succulent stage.
This Artist's Conk (Ganoderma applanatum) is exhibiting geotropism
— the fungus first grew while the tree was still standing, then, after the tree 

fell, added new growth with its pore surface—once again—facing down.